Heavy Ion Transport in SiC-Based Power Devices

Joseph A. McPherson¹, Peter J. Kowal¹, Gyanesh K. Pandey¹, T. Paul Chow¹, Wei Ji², Andrew A. Woodworth³

¹Rensselaer Polytechnic Institute, Troy, New York, United States; ²NASA Glenn Research Center, Cleveland, Ohio, United States; ³Corresponding Author: jw2@rpi.edu, (518)276-6602

Abstract

Single-event burnout (SEB) phenomenon is studied using a unified physics model between radiation transport and device response. The charge carrier distribution is modeled using a double Gaussian function to include ion and delta-ray contributions. 3D TCAD electro-thermal simulations were performed on a high voltage SiC JBS diode which agree with experimental results of SEB in SiC power devices.

Motivation

• SiC-based power devices are susceptible to heavy ions with relatively low LETs
• Triggering and failure mechanisms of SEB are not yet fully understood
• Modeling techniques are needed to understand SEB triggers and behaviors

Heavy Ion Transport

• Monte Carlo radiation transport code MCNP6.2 is used for modeling 1289 MeV silver (Ag) ion strike process in SiC
• Heavy ions are highly ionizing and create free electrons (delta-rays)

Charge Carrier Distribution

• High fidelity radiation transport physics model and device physics simulator are linked
• Data from the radiation transport physics model is fitted to a linear combination of Gaussian functions
 \[\varphi(x) = A \exp\left(\frac{x^2}{a^2}\right) + B \exp\left(\frac{x^2}{b^2}\right) \]
 where \(a, b, A, \) and \(B \) are fitting parameters, \(x \) is radius, and \(\varphi(x) \) is charge carrier density

3D Device Simulations

• Sentaurus from Synopsys is used for full 3D transient electro-thermal simulations
• Notional JBS diode similar to 1200V commercially available devices is modeled

Results

• Device peak temperature was predicted based on three charge carrier distribution models: double Gaussian fit, simplistic, and ion core models
• Simplistic model uses a constant width and LET while ion core model uses a Gaussian only for heavy ion contributions
• All models reach temperatures over 3000 Kelvin where simulations are terminated upon achieving burnout condition

Conclusions

• Significant difference in device response to heavy ion strikes using simple approximations and those backed by high fidelity radiation simulations
• Heavy ion transport model is critical in modeling device response

References

This work was made possible by the NASA Space Technology Research Grants Program. We would like to thank Dr. Roger Martz at Los Alamos National Labs for granting us access to a prerelease version of MCNP6 for this work. PJ Kowal was supported by the Nuclear Regulatory Commission Fellowship Program under the grant NRC-HQ-BA-15-G-2018 Program B.