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We investigated the mechanical properties of graphyne monolayer using first-principles calculations based on the Density Func-
tional Theory. Graphyne has a relatively low in-plane Young’s modulus (162 N/m) and a large Poisson ratio (0.429) compared to
graphene. It can sustain large nonlinear elastic deformations up to an ultimate strain of 0.2 followed by a strain softening until
failure. The single bond is more vulnerable to rupture than the triple bond and aromatic bond, although it has shorter bond length
(0.19Å shorter) than aromatic bond. A rigorous continuum description of the elastic response is formulated by expanding the
elastic strain energy density in a Taylor series in strain truncated after the fifth-order term. We obtained a total of fourteen nonzero
independent elastic constants which are components of tensors up to tenth order. Pressure effect on the second-order elastic con-
stants, in-plane Young’s modules, and Poisson ratio are predicted. This study implies that graphyne-based surface acoustic wave
sensors and waveguides may be synthesized by introducing precisely controlled local strains on graphyne monolayers.

1 INTRODUCTION

Presented in all known life forms, carbon provides the ba-
sis for life on Earth. Carbon has various hybridized states
(sp, sp2, and sp3) and can form diverse bonding, with
ability to bind to itself and to nearly all elements. As a
consequence, carbon has numerous allotropes1,2, such as
graphene3, fullerenes4, carbon nanotubes5, nanoringes6, and
nanobuds7. Synthesis and discovery of new carbon phases
with high stability, novel bonding characteristics, unique prop-
erties and applications will be an ongoing effort for theoreti-
cal, synthetic and material scientists2. As new forms of non-
natural carbon allotropes related to graphite/graphene, gra-
phyne (Fig. 1) has been the subjects of interest due to their
unique structures and intriguing electronic, optical and me-
chanical properties8,9, and promising nanoelectronics and en-
ergy storage applications10. A very recent study indicates
that graphyne is potentially superior to graphene in directional
electrical conductivity11.

Graphyne possess a remarkable planar network consisting
of only benzene and alkyne units. The characteristic of this
planar layered structure is the coexistence ofsp2 andsp hy-
bridized carbon atoms, comprising aromatic benzene rings
and weakly antiaromatic 12-membered rings12,13. Different
from graphene/graphite, there are three types of C-C bonds in
graphyne: C(sp2)-C(sp2) for the central aromatic ring (1.43
Å ), C(sp2)-C(sp) connecting the adjacent C=C and C≡C
bonds (1.41Å ), and C(sp)-C(sp) for the linked triple bonds
(1.22Å ). It has been pointed out that insertion of -C≡C- unit
into each single bond of a molecule can form an expanded
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Fig. 1 Left: graphyne monolayer. Right: graphyne molecule.

system and does not alter the molecule symmetry14. Gra-
phyne monolayer has the same hexagonal symmetry (p6m)
as graphene. Graphyne can be viewed as constructed from
graphene by replacing one-third of the C-C bonds with C≡C
linkages. It is predicted to have high temperature stability.

Graphyne was first proposed in 1987 by Baughmanet al. 15.
Despite some attempts16,17, the synthesis of graphyne has not
yet been reported. Most recently, experimental success has
been achieved in the synthesis of graphdiyne which is a sub-
structure of graphyne18,19. Lacking experimental data, knowl-
edge of the properties of this promising and interesting car-
bon allotrope depends on theoretical predictions. For elec-
tronic properties, Naritaet al. reported the optimized lattice
length (6.86Å ), binding energy (7.95 eV/atom), band gap
(0.52 eV)8. Kondo et al. calculated the band gap of gra-
phyne (0.89 eV) at the extended Huckel level20. Long et
al. investigated the electronic structure and charge mobilityof
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graphdiyne sheet and nanoribbons, which has a band gap of
0.46 eV.21. For compounds, Zhouet al. analyzed the nature
of bonding and energy band structure of graphyne and its BN
analog called “BN-yne”22. Their work showed that the band
gap can be modulated by changing the size of hexagonal ring
and the length of carbon chain. It is found that the high mo-
bility of doped lithium and high energy storage capacity make
graphyne a promising candidate for the anode material in bat-
tery applications23. Panet al. explored the configurations and
electronic properties of graphyne and graphdiyne nanoribbons
with armchair and zigzag edges24. For mechanical proper-
ties, a classical molecular dynamics study has shown that un-
like graphene, the fracture strain and stress of graphyne de-
pend significantly on the direction of the applied strain and
the alignment with carbon triple-bond linkages25. Kang et
al. reported in-plane stiffness of graphyne monolayer as 166
N/m and Poisson’s ratio 0.4179.

There are some promising applications and recent devel-
opment of the 2D materials, including high frequency field-
effect transistors26, graphene-based spintronics27, ferromag-
netics28, antiferromagnetics29, and nanoelectronics30. Due to
monoatomic thickness, these 2D monolayers are very com-
mon to experience strain states during their applications,
for example, mismatch strain and substrate surface corruga-
tion30,31. Therefore, the knowledge of mechanical proper-
ties of graphyne is highly desired. Several previous studies
have shown that 2D monolayers present a large nonlinear elas-
tic deformation during the tensile strain up to the ultimate
strength of the material followed by a strain softening until
fracture32–35. We expect that the graphyne behaves in a simi-
lar manner.

Under large deformation, the strain energy density need to
be expanded in a Taylor series to include quadratic and higher
order terms in strain. The higher order terms account for
both nonlinearity and strain softening of the elastic deforma-
tion. They can also express other anharmonic properties of
2D nanostructures including phenomena such as thermal ex-
pansion, phonon-phonon interaction, etc36. Despite the im-
portance, the high order non-linear elastic properties of the
2D graphyne are still unknown.

The goal of this paper is to study the mechanical behaviors
at large strains and find an accurate continuum description of
the elastic properties of graphyne fromab initio density func-
tional theory calculations. The total energies of the system,
forces on each atoms, and stresses on the simulation boxes are
directly obtained from DFT calculations. The response of gra-
phyne under the nonlinear deformation and fracture are stud-
ied, including ultimate strength and ultimate strain. The high
order elastic constants are obtained by fitting the stress-strain
curves to analytical stress-strain relationships that belong to
the continuum formulation33. Our results of continuum for-
mulation could also be useful in finite element modeling of

the multiscale calculations mechanical properties of graphyne
in continuum level. The remainder of the paper is organized as
follows. Section 2 presents the basic nonlinear elastic theory
applied to 2D hexagonal structures. The computational details
of DFT calculations are in section 3. The results and analysis
are in section 4, followed by conclusions in section 5.

2 NONLINEAR ELASTICITY THEORY

We consider a primitive unit cell containing 12 atoms in one
plane, with periodic boundary conditions. The undeformed
reference configuration is shown in Fig. 2, with lattice vec-
torsHi, i = 1,2,3. When a macroscopically homogeneous de-
formation with gradient tensorF37 is applied, the lattice vec-
tors of the deformed graphyne arehi = FHi. The Lagrangian
strain38 is defined asηηη =1

2(F
T F− I), whereI is the identity

tensor. For a hyperelastic materials, the strain energy density
has functional form ofΦ = Φ (η) and the components of the
symmetric second Piola-Kirchhoff stress tensor (Σ) can be ex-
pressed as

Σi j =
∂Φ
∂ηi j

. (1)

Using Taylor’s series expansion up to fifth order, the above
relationship may be written as

Σi j =Ci jklηkl +
1
2!

Ci jklmnηklηmn +
1
3!

Ci jklmnopηklηmnηop

+
1
4!

Ci jklmnopqrηklηmnηopηqr.

(2)

Einstein’s summation convention has been employed for re-
peating indices which range from 1 to 3. HereinC de-
notes each higher-order elastic modulus tensor; the rank of
each tensor corresponds to the number of subscripts. The
second-order elastic constants (SOEC)Ci jkl , third-order elas-
tic constants (TOEC),Ci jklmn, fourth-order elastic constants
(FOEC),Ci jklmnop, and fifth- order elastic constants (FFOEC),
Ci jklmnopqr, are given by the components of the fourth-, sixth-,
eighth-, and tenth-rank tensors, respectively.

Using conventional Voigt notation39 for subscripts: 11→
1, 22→ 2, 33→ 3, 23→ 4, 31→ 5, and 12→ 6. Please note
that for strainη4 = 2η23, η5 = 2η31, η6 = 2η12. Eqn. 2 can
be rewritten as

ΣI =CIJηJ +
1
2!

CIJKηJηK +
1
3!

CIJKLηJηKηL

+
1
4!

CIJKLMηJηKηLηM.

(3)

where the upper case indices are from 1 to 6.
We modeled the monolayer graphyne as a two-dimensional

(2D) structure and assume that the deformed state of the
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Fig. 2 Atomic structure of graphyne monolayer in the primitive
unit cell (12 atoms) in the undeformed reference configuration.

monolayer graphyne is such that the contribution of bending
to the strain energy density is negligible, compared to the in-
plane strain contribution. This assumption is reasonable since
the radius of curvature of out-of-plane deformation is signif-
icantly larger than the in-plane inter-atomic distance. The
stress state of monolayer graphyne under those assumptions
can be assumed to be 2D and we only consider the in-plane
stress and strain components for these kind of structures.

For a general deformation state the number of independent
components of the second, third, fourth and fifth order elastic
tensors is 21, 56, 126, and 252, respectively. However, there
are only fourteen independent elastic constants need to be ex-
plicitly considered due to the symmetries of the atomic lattice
point groupD6h which consists of a six-fold rotational axis
and six mirror planes35.

The fourteen independent elastic constants of graphyne are
determined by a least-squares fit to stress-strain results from
DFT based first-principles studies in two steps, detailed in
our previous work34. In the first step, we use a least-squares
fit to five stress-strain responses. Five relationships between
stress and strain are necessary because there are five indepen-
dent FFOECs. We obtain the stress-strain relationships by
simulating the following deformation states: uniaxial strain
in the zigzag direction; uniaxial strain in the armchair direc-
tion; and biaxial strain. From the first step, the components
of SOEC, TOEC, FOEC are over-determined (i.e, the number
of linearly independent variables are greater than the number
of constrains), and the FFOEC are well-determined (the num-
ber of linearly independent variables are equal to the number
of constrains). Under such circumstance, the second step is
needed: least-square solution to these over- and well- deter-
mined linear equations.

3 DENSITY FUNCTIONAL THEORY CAL-
CULATIONS

The stress-strain relationship of graphyne under the desired
deformation configurations is characterized via first-principles

calculations with the density-functional theory (DFT). DFT
calculations were carried out with the Vienna Ab-initio Sim-
ulation Package (VASP)40–43 which is based on the Kohn-
Sham Density Functional Theory (KS-DFT)44,45with the gen-
eralized gradient approximations as parameterized by Perdew,
Burke and Ernzerhof (PBE) for exchange-correlation func-
tions46. The electrons explicitly included in the calculations
are the (2s22p2) electrons. The core electrons (1s2) are re-
placed by the projector augmented wave (PAW) and pseudo-
potential approach47,48. A plane-wave cutoff of 400 eV is
used in all the calculations. The calculations are performed
at zero temperature.

The criterion to stop the relaxation of the electronic degrees
of freedom is set by total energy change to be smaller than
0.000001 eV. The optimized atomic geometry was achieved
through minimizing Hellmann-Feynman forces acting on each
atom until the maximum forces on the ions were smaller than
0.01 eV/̊A.

The atomic structures of all the deformed and undeformed
configurations are obtained by fully relaxing a 12-atom-unit
cell where all atoms were placed in one plane. The simula-
tion invokes periodic boundary conditions for the two in-plane
directions while the displacement to out-of-plane direction is
forbidden.

The irreducible Brillouin Zone was sampled with a Gamma-
centered 11×11×1 k-mesh. Such largek-mesh was used to
reduce the numerical errors caused by the strain of the sys-
tems. The initial charge densities were taken as a superposi-
tion of atomic charge densities. There was a 11Å thick vac-
uum region to reduce the inter-layer interaction to model the
single layer system. The results of the calculations are inde-
pendent of the precise value of the out-of-plane thickness,so
there is no physical interpretation attached to the quantity.

The VASP simulation calculates the true or Cauchy stresses,
σ , which for monolayer graphyne must be expressed as a 2D
force per length with units of N/m by taking the product of the
Cauchy stresses (with units of N/m2) and the super-cell thick-
ness of 11Å. The Cauchy stresses are related to the second
Piola-Kirchhoff (PK2) stressesΣ as

Σ = JF−1σ(F−1)T (4)

whereJ=det(F).

4 RESULTS AND ANALYSIS

4.1 Atomic Structure

We first optimize the equilibrium lattice constant for mono-
layer graphyne. The total energy as a function of lattice spac-
ing is obtained by specifying nine lattice constants varying
from 6.5 Å to 7.3 Å , with full relaxations of all the atoms.
A least-square fit of the energy vs. lattice constant with a
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Fig. 3 Energy-strain responses for uniaxial strain in armchair and
zigzag directions, and biaxial strains.

fourth-order polynomial function yields the equilibrium lat-
tice constant as 6.889̊A . The result is in good agreement with
previous DFT calculations9,22.

The most energetically favorable structure is set as the
strain-free structure in this study and the atomic structure, as
well as the primitive cell is shown in Fig. 2. Specifically, the
bond length of the triple bond between atom B and C (marked
in Fig. 1) is 1.223Å. The largest bond length is the aromatic
bond between atom D and atom E, which is 1.426Å , slightly
longer than that of a pristine graphene sheet (1.425Å ) due
to the presence of the acetylene groups. The single bond be-
tween atom A and B (symmetrically C and D) is 1.407Å,
shorter than the typical value of 1.47̊A . The contraction of
the single bonds is due to the charge transfer from the benzene
ring to the acetylene group22.

4.2 Strain Energy

When the strains are applied, all the atoms are allowed full
freedom of motion within their plane. A quasi-Newton al-
gorithm is used to relax all atoms into equilibrium positions
within the deformed unit cell that yields the minimum total
energy for the imposed strain state of the super cell.

Both compression and tension are considered with La-
grangian strains ranging from -0.1 to 0.3 with an increment of
0.02 in each step for all three cases. We define strain energy
per atomEs = (Etot −E0)/n, whereEtot is the total energy of
the strained system,E0 is the total energy of the strain-free
system, andn = 12 is the number of atoms in the unit cell.
Fig. 3 shows theEs as a function of strain in uniaxial arm-
chair, uniaxial zigzag and biaxial deformation.Es is seen to
be anisotropic with strain direction.Es is non-symmetrical for

compression (η < 0) and tension (η > 0) for all three cases.
This non-symmetry indicates the anharmonicity of the mono-
layer graphyne structures.

4.3 Stress-strain Relationships

The second P-K stress versus Lagrangian strain relationship
for uniaxial strains along the armchair and zigzag directions
and biaxial strains are shown in Fig. 4. The ultimate strength is
the maximum stress that a material can withstand while being
stretched, and the corresponding strain is theultimate strain.

In general, the drop of the strain energy in the energy-
strain curve indicates the internal structure changes. Thecor-
responding strain of the maximum strain energy is thecritical
strain. The stresses are the derivatives of the strain energies
with respect to the strains. Under ideal conditions, the crit-
ical strain is larger than the ultimate strain. The systems of
perfect graphyne under strains beyond the ultimate strainsare
in a metastable state, which can be easily destroyed by long
wavelength perturbations, vacancy defects, as well as high
temperature effects49. The ultimate strain is determined by
the intrinsic bonding strengths and acts as a lower limit of the
fraction strain. Thus it has practical meaning in considering
for its applications.

The ultimate strengths and strains corresponding to the dif-
ferent strain conditions in Fig. 4 are in Table 1, compared with
those of graphene and previous molecular dynamics study25.
Graphyne has much lower ultimate strengths, about 2/3 of
these of graphene. It also has smaller ultimate strains under
the zigzag and biaxial strains. However, it has larger ultimate
strain under the armchair strain. This could be due to the re-
lease of the pre-contracted single C-C bonds parallel to the
armchair direction. Our results of ultimate stress and strain
are quite different form the predictions of previous molecular
dynamics study25. This might indicate that the DFT method
is more suitable in studying this 2D material under extreme
conditions of large strain and stresses (> 50 GPa) than a force
field method.

The material behaves in an asymmetric manner with respect
to compressive and tensile strains. With increasing strains,
the bonds are stretched and eventually rupture. The insets
in Fig. 4 shows the atomic structure of graphyne at ultimate
strain. When strained in the armchair direction, once the bond
lengths of single bonds along the armchair direction are elon-
gated more than 1.08 times its value at zero strain, the bonds
are considered to be ruptured (Fig. 4a). However, it is the
aromatic bond between atoms D and E that ruptures when
the structure is loaded in the zigzag direction (Fig. 4b). All
the single bonds rupture when loaded in the biaxial direction
(Fig. 4c). Our results show that the single bond is more vul-
nerable to rupture than the triple bond and aromatic bond,
although it has shorter bond length (0.19Å shorter) than aro-
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Fig. 4 Stress-strain response for (a) uniaxial strain along the
armchair direction, (b) uniaxial strain along the zigzag direction and
(c) biaxial strain.Σ1 (Σ2) denotes thex (y) component of stress.
“Cont” stands for the fitting of DFT calculations (“DFT”) to
continuum elastic theory.

Table 1 Ultimate strengths (Σa
m,Σz

m,Σb
m) in units of N/m and

ultimate strains (ηa
m, ηz

m, ηb
m) under uniaxial strain (armchair and

zigzag) and biaxial of graphyne from DFT calculations, compared
with graphene and previous molecular dynamics (MD) study.

Graphyne Graphyne(MD)25 Graphene50

Σa
m 17.84 14.34† 28.56

ηa
m 0.2 0.08 0.18

Σz
m 18.83 31.97† 30.36

ηz
m 0.2 0.12 0.22

Σb
m 20.64 - 32.01

ηb
m 0.18 - 0.22

† The value is converted from original data (in units of GPa)
obtained with “Energy minimization” using the 3.20̊A in
thickness assumed in ref[25].

matic bond.

4.4 Elastic Constants

The elastic constants are critical parameters in finite element
analysis models for mechanical properties of materials. Our
results of these elastic constants provide an accurate contin-
uum description of the elastic properties of graphyne from ab
initio density functional theory calculations. They are suitable
for incorporation into numerical methods such as the finite el-
ement technique.

The second elastic constants model the linear elastic re-
sponse. The higher (> 2) order elastic constants are important
to characterize the nonlinear elastic response of graphyneus-
ing a continuum description. These can be obtained using a
least squares fit of the DFT data and are reported in Table 2.
Corresponding values for graphene are also shown.

The in-plane Young’s modulusYs and Poison’s ratioν may
be obtained from the following relationships:Ys = (C2

11−

C2
12)/C11 andν = C12/C11. Our results ofYs = 162.1 (N/m)

and ν = 0.429 are comparable with previousab initio pre-
diction (Ys = 166 (N/m) andν = 0.417)9. The in-plane
Young’s modulus of graphyne is quite small (47%) compared
to graphene, which indicates that the graphyne is very soft.
The small in-plane Young’s modulus could be understood as
by two facts. First the average coordination number of an atom
in graphyne is 2.5, less than those in graphene, which are 3.0.
As a consequence, the number of bonds in graphyne is fewer
than that of graphene. Second, the in-plane atomic mass den-
sity and the electronic charge density of graphyne are smaller
(0.77 times) than those of graphene.

However, graphyne has a Poisson’s ratio which is twice as
large as graphene. Recall that a perfectly incompressible ma-
terial has a Poisson’s ratio of 0.5. Hence, graphyne is observed
to conserve volume well under uniaxial strains.
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Table 2 Nonzero independent components for the SOEC, TOEC,
FOEC and FFOEC tensor components (in units of N/m), Poisson’s
rationν and in-plane Young’s modulusYs of graphyne from DFT
calculations, compared with graphene.

Graphyne Graphene50 Graphene35

a 6.889 2.468 2.446
Ys 162.1 344.6 348
ν 0.429 0.179 0.169

C11 198.7 356.0 358.1
C12 85.3 63.7 60.4
C111 -890.9 -3120.9 -2817
C112 -872.6 -471.7 -337.1
C222 -1264.2 -2978.1 -2693.3
C1111 -7966 19980 13416.2
C1112 4395 2706 759
C1122 8662 2843 2582.8
C2222 1154 16568 10358.9
C11111 89000 -81498 -31383.8
C11112 -10393 -13378 -88.4
C11122 -26725 -12852 -12960.5
C12222 15495 -28504 -13046.6
C22222 14262 -79311 -33446.7

The knowledge of higher order elastic constants is very use-
ful to understand the anharmonicity. Especially, third-order
elastic constants are important in understanding the nonlinear
elasticity of materials such as changes in acoustic velocities
due to finite-strain. With third-order elastic moduli, we can
study the effect of the second-order elastic moduli on the pres-
surep acting in the plane of graphyne monolayer. Explicitly,
when pressure is applied, the pressure dependent second-order
elastic moduli ( ˜C11, ˜C12, ˜C22) can be obtained fromC11, C12,
C22, C111, C112, C222, Ys, ν , as formulated in Ref34.

The second-order elastic moduli of graphyne are seen to in-
crease linearly with the applied pressure (Fig. 5). Poisson’s ra-
tio also increases monotonically with the increase of pressure.
˜C11 is not symmetrical to ˜C22 any more. Only whenP = 0,
˜C11 = ˜C22 = C11. This anisotropy could be the outcome of

anharmonicity.
Graphyne monolayers exhibit instability under large ten-

sion. All stress-strain curves in the previous section showthat
graphyne will soften when the strain is larger than the ulti-
mate strain. From the view of electron bonding, this is due
to the bond weakening and breaking. This softening behavior
is determined by the TOECs and FFOECs in continuum as-
pect. The negative values of TOECs and FFOECs ensure the
softening of graphyne monolayer under large strain.

The hydrostatic terms (C11, C22, C111, C222, and so on) of
graphyne monolayers are smaller than those of graphene, con-
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Fig. 5 Second-order elastic moduli and Poisson ratio as function of
the pressure.

sistent with the conclusion that the graphyne is “softer”. The
shear terms (C12, C112, C1122 etc.) in general are larger than
those of graphene, which contributes to its less compressibil-
ity.

4.5 Promising Applications

In graphyne monolayer, there are non-zero in-plane Young’s
modulus and shear deformations. Hence, it is possible to gen-
erate sound waves with different velocities depending on the
deformation mode. Sound waves generating biaxial deforma-
tions (compressions) are compressional orp-waves. Sound
waves generating shear deformations are shear ors-waves.
The sound velocities of these two types of waves are calcu-
lated from the second-order elastic moduli and mass density
using the following relations:

vp =

√

Ỹs(1− ν̃)
ρm(1+ ν̃)(1−2ν̃)

, (5)

vs =

√

˜C12

ρm
. (6)

The dependence ofvp andvs on pressure (biaxial stress) is
plotted in Fig. 6. Bothvp andvs monotonically increase with
increase in pressure. Thus they can be tuned by introducing
the biaxial strain through the stress-strain relationshipshown
in Fig. 4c.

Compressional to shear wave velocity ratio (vp/vs) is a very
useful parameter in the determination of the materials mechan-

6 | 1–8



10
20
30
40
50

v p
 (K

m
/s

)

8

12

16

20

v s
 (K

m
/s

)

�20 �10 0 10 20
In-plane pressure (N/m)

2.0

2.2

2.4

2.6

v p
/
v s

Fig. 6 p-wave ands-wave velocities, and compressional to shear
wave velocity ratiovp/vs as a function of in-plane pressure.

ical properties. It depends only on the Poisson’s ratio as

vp

vs
=

√

1
ν̃
(1+

ν̃2

1−2ν̃
). (7)

The ratio ofvp/vs monotonically increases with the increase
of pressure as shown in Fig. 6.

Notice that a sound velocity gradient could be achieved by
introducing stress into a graphyne monolayer, which could
lead to refraction of sound wavefronts in the direction of lower
sound speed, causing the sound rays to follow a curved path51.
The radius of curvature of the sound path is inversely pro-
portional to the gradient. Also a negative sound speed gra-
dient could be achieved by a negative strain gradient. This
tunable sound velocity gradient can be used to form a sound
frequency and ranging channel, which is the functional mech-
anism of waveguides and surface acoustic wave (SAW) sen-
sors52,53. Thus, graphyne-based nano-devices of SAW sen-
sors, filters and waveguides may be synthesized using local
strains for next generation electronics.

5 CONCLUSIONS

We studied the mechanical response of graphyne monolayer
under various strains using DFT based first-principles calcu-
lations. The bond lengths of the single, triple, and aromatic
bonds are 1.407̊A , 1.223Å , and 1.426Å , respectively. The
single bond is more vulnerable to rupture than the triple bond
and aromatic bond, although it has shorter bond length than
aromatic bond. Graphyne monolayers exhibit a nonlinear elas-
tic deformation up to an ultimate strain of 0.2, followed by
a strain softening until failure. The deformation and failure

behavior and the ultimate strength are anisotropic. The ul-
timate strength in biaxial strain is about 2.81 N/m and 1.81
N/m larger than that in the armchair and zigzag directions, re-
spectively.

We found an accurate continuum description of the elas-
tic properties of graphyne by explicitly determining the four-
teen independent components of high order (up to fifth order)
elastic constants from the fitting of the stress-strain curves ob-
tained from DFT calculations. This data is useful to developa
continuum description which is suitable for incorporationinto
a finite element analysis model for its applications in large
scale.

Pressure effect on the second-order elastic constants, in-
plane Young’s modules, and Poisson ratio are predicted. Gra-
phyne is observed to have a relatively low in-plane Young’s
modulus (162 N/m) and a large Poisson ratio (0.429) com-
pared to graphene. Another interesting observation is that
local variations of pressure, introduced by external stresses
could be used to modulate the velocity of sound waves in
graphyne. Hence, graphyne-based nanodevices or SAW sen-
sors and waveguides could be synthesized by introducing local
strain for next generation electronic devices.
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